Tag Archive: Science


In addition to his usual amazingly funny physics-related humor, xkcd has published a very handy comparison chart that helps to visualize the relative doses for a variety of different types of radiation exposer. Click on the image to be brought to the full-size chart on xkcd’s site.

Radiation dose comparison sheet (xkcd)

Mercury (MESSENGER)

Mercury is the closest planet to the sun and it is also the smallest planet in the solar system, now that Pluto has been demoted. Until now, Mercury has been the only major body in the inner solar system that has not been orbited by human spacecraft. As of Thursday, NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging probe, aka MESSENGER, (what an acronym!) successfully entered orbit around the planet, after two flybys of Venus, 3 of Mercury and one of Earth itself. There, it will map the surface and study the environment around Mercury. There are a number of mysteries surrounding the planet, including why it has such a large iron core. There are also a number of questions about strange and bizarre terrain found opposite the planet from a huge 1,550 km-wide impact basin.

Mercury’s next visitors will arrive as part of a joint European Space Agency and Japanese Space Agency project, BepiColombo, that is expected to reach the planet in 2019.

Wikipedia: Mercury

The Moon, near 1st Quarter Phase (rbw)

A few friends have brought to my attention an article that was posted by Yahoo News about the ‘Supermoon’. They were asking what I thought about the possibility that because the March 19th Full Moon will be closer to the Earth than at any time during the past 18 years that we will see all sorts of natural disasters. Apparently, an Astrologer, Richard Nolle (who I have already just given more attention than he deserves) believes that the close proximity of the moon will cause the standard panoply of natural disasters – you know – volcanoes, earthquakes, etc. So what is going on? What is this all about?

Well, for starters, there will hardly be chaos outside of the chaos that already takes place in the world without a ‘Supermoon’. In fact, his statement is false on its face: Clearly the world experienced no major chaos due to the Moon 18 years ago when the Moon was closer than it will be Saturday. Nor do Astronomers recognize the term ‘Supermoon’.

What is true is that the Moon does revolve around the Earth in an elliptical orbit. The Moon typically gets as close to the Earth as 363,100 km (225,600 mi) and as far from it as 405,700 km (252,100 mi). The closest point in the orbit is called perigee while the most distant point is call apogee. These two words come from Greek. Gee refers to the Earth while peri- and apo- mean “near” and “far”, respectively.

The perigee and apogee distances that I mentioned above are not actually constant. All of the objects in the solar system are under the influence of the gravity from all of the other objects in the solar system. The Sun and Jupiter have the strongest gravitational fields in the solar system, and they pull and tug at all of the other objects the most. Meanwhile, all of the objects in the solar system are moving relative to one another. The net effect is that all orbits change slightly over time and it just happens that the Moon will be rather close this coming weekend.

Because the Moon is closer to the Earth at perigee, tides on the Earth are higher. This is because the force of gravity from the Moon is inversely proportional to the its distance, squared, and the Moon’s gravitational pull on Earth is a little more 20% stronger at perigee than it is at apogee. This has nothing to do with the Moon being either Full or New, however. Whether the Full Moon happens while the Moon is at perigee, apogee or at some other point in its orbit depends on the relative angle between the Sun, Earth and Moon – and that changes during the course of the year. Right now, during the Moon is near Full Phase when it is at perigee and by Fall, it will be Full right around apogee.

John Bellini, a geophysicist from the U.S. Geological Survey, mentions that even with the slight fluctuation in the gravitational force from the Moon as it revolves around the Earth, that there is little correlation between lunar perigee and earthquakes on the Earth. That is because the forces that cause plate tectonics are not driven by astronomical sources (and certainly not astrological sources!) – they are driven by currents in Earth’s mantle. There is, however, a noticeable difference in the heights of tides.

Now that you are relieved, I will mention that the Full Moon will look about 8% larger than average and it will look about 14% larger than when it is at Apogee Saturday night, so if the weather is permitting, go out and check it out. The Moon will rise around 7:30pm and it will be high in the sky by midnight or 1am on the 20th, so go out and have a look – it will be pretty!

Radiation symbol (Cary Bass, via Wikipedia)

Why this Article?

The terrible tragedy in Japan has sparked a huge discussion about nuclear power, radioactivity and nuclear meltdown. Unfortunately, major media in the United States continually report about “high doses” and “low doses” without quoting any actual measurements of radiation radiation levels. This is probably due to the fact that most reporters do not understand nuclear power and radiation themselves. It is a huge problem because it does not provide the public with the detailed information that it would need in order to fully understand the measurements and how it would affect their own health and livelihood.

One unfortunate result of this nebulous reporting, whether it is intentional or not, is that it is rather easy to scare people with the mere mention of the word “radiation” simply because it is very easy to scare people with things that they do not understand. On the other hand, people with a better understanding of radiation will recognize that the level of risk arising from radiation is dependent on the type, the length and the amount of exposure to it. They will be able to compare the measurements of reported radiation doses with background levels. Except in certain tragic circumstances, this generally means that people can be less fearful and more conscientious about their radiation risk.

In this article, I will describe where radiation comes from, a number of ways in which it is measured and what the likely risks are for various levels of exposure. This piece is not really a news article in and of itself, but it is intended to be a guide to help interpret news in those rare cases where the press actually reports the numbers that you need to know.

First, let’s look at the different types of particles that make up the atom and the forces that make them stick together. The complicated part of quantum physics is in making calculations and in deriving physical laws to explain them. Understanding how they work is not so bad, give it a try. : )

Subatomic Particles

One aim of physics is to try to understand the Universe by looking at how its constituents interact. By the 1970s, physicists had put together a detailed model, called the Standard Model, (we physicists sometimes have problems with creativity when it comes to naming things) that describes all of the known fundamental particles and their interactions.

Fundamental particles are simply particles that we believe can not be divided into smaller parts. They are broken down into two major categories, depending on a property called spin: Fermions and Bosons. Spin is a measure of the intrinsic angular momentum of a particle. According quantum mechanics, subatomic particles can only have certain values of spin. Fermions are particles with spins of 1/2, 3/2, 5/2 and so on, while Bosons are particles with spins of 0, 1, 2, and so on, and particles from either of these two families have very different properties.

Fermions can broken into a couple of subgroups, called Leptons and Quarks. These groups are determined by the amount of electric charge that they carry. The Leptons include the electron and its cousins, the muon and the tauon (usually the tau). Each lepton is associated with another particle called a neutrino. Neutrinos are particles that rarely interact with matter. In fact to be sure that you would capture a neutrino about 60% of the time, you would need a lead wall roughly 8 light-years thick! That is 47 trillion miles.

The other subgroup, the Quarks, are a group of particles with electrical charges of either +2/3 or -1/3. They make up subatomic particles like protons and neutrons.

Fermions (Spin = 1/2, 3/2, 5/2, etc.)

Leptons (Spin = 1/2)
Flavor Symbol Mass (GeV/c2) Electric Charge
Electron e 0.000511 -1
Electron Neutrino νe <1×10-8 0
Muon μ 0.106 -1
Muon Neutrino νμ <0.0002 0
Tau τ 1.7771 -1
Tau Neutrino ντ <0.02 0
Quarks (Spin = 1/2)
Flavor Symbol Mass (GeV/c2) Electric Charge
Up u 0.003 +2/3
Down d 0.006 -1/3
Charm c 1.3 +2/3
Strange s 0.1 -1/3
Top t 175 +2/3
Bottom b 4.3 -1/3

All of the matter that you deal with every day, whether it is atoms inside you, the air you breathe, or even those in the Earth itself, are all made of Fermions. How all of those particles interact is determined by force-carrying particles, the Bosons. There are four fundamental forces that we know of right now. Two are likely fairly familiar from everyday experience and two are not so familiar: Gravity, Electromagnetism, the Weak Nuclear Force and the Strong Nuclear Force. Most people deal with gravity and electromagnetism every day, but few people worry about the weak and strong forces, but the weak and strong forces govern radioactive decay.

Each Boson carries a separate force. Here is a summary:

Bosons (Spin = 0, 1, 2, etc.)

Name Symbol Mass (GeV/c2) Electric Charge Spin Forces carried
Photon γ 0 0 1 Electromagnetic Force
W-minus W 80.4 -1 1 Weak Nuclear
W-plus W+ 80.4 +1 1 Weak Nuclear
Z-nought Z0 91.187 0 1 Weak Nuclear
Gluon g 0 0 1 Strong Nuclear
Graviton G 0 0 2 Gravity (not yet detected)

A particle such as an electron would not experience the electromagnetic force, for example, if it did not interact with photons. A person feels the pull of gravity from the Earth because we think that Earth is continuously emitting a very large number of gravitons that interact with the particles that make up a person. Without those graviton interactions, there would be no gravity. Physicists believe that the particles in the two tables above can fully explain all of the interactions between all of the objects in the Universe (possibly excluding Dark Energy and Dark Matter, but that is another story). It is only a matter of working out the details to try to understand how the Universe works, though there are complications because – well – it turns out that the interactions can be complicated. It is still good to have goals!

E = mc2

Einstein proposed his most famous equation during his annus mirabilis (miracle year) when he wrote four papers that set the groundwork for 20th century physics. Inertia is the resistance of an object to changes in motion. We measure this resistance with the quantity mass. E = mc2 says that any object with a mass, m, has a certain amount of energy, E, locked up in that mass. It is a lot of energy per unit mass, because c is the speed of light and light happens to be quite fast: c = 3.0×108 m/s = 186,000 mile/sec!

It happens one gram of sugar has 2.4 Calories (kcal) of chemical energy in it and when we eat sugar, that is roughly how much energy we gain from it. If we measure that in Joules (J, the SI unit for energy), we have 10,000 J of chemical energy in a gram of sugar. But one gram of any substance has (0.001kg)*(3.0×108 m/s)2 = 9×1013 J of energy locked up in its mass! That is roughly enough energy to supply the United States with power for three days!

The tables above give the masses of each particle in units of GeV/c2 (giga-electron volts). The prefix giga- means billion, so 1 GeV = 109eV. And one electron volt is defined as the amount of kinetic energy that a single electron gains from a voltage drop of 1 Volt. So you can see that this definition of mass came after E=mc2. It is possible to use these conversions:

1 eV = 1.6×10-19 J – a really small unit!
1 GeV/c2 = 1.783×10-27 kg – roughly the mass of a proton

These are reallly small units, but remember that a cubic centimeter has something like 1023 = 100,000,000,000,000,000,000,000 atoms!

All of the above particles have an anti-matter equivalent that has the same mass but opposite electric charge. When a particle collides with an anti-particle, both particles annihilate, giving off photons with total energy E=mc2. Photons are their own anti-particles, too.

Nuclear power allows us to tap a little bit of that energy that is stored in mass, but first let us take a look at atoms to see how.

Baryons

Now that we have covered the subatomic particles, let’s make atoms. Most people learn in middle school that atoms are composed of protons, neutrons and electrons. The Protons and neutrons reside in the nucleus at the center of the atom and the electrons move around in the electron cloud that surrounds it. Protons and neutrons are (very) roughly 2000 times heavier than an electron so they carry most of the mass of of the atom, considering that an electrically neutral atom has the same number of protons and electrons.

When we talk about nuclear power, we are primarily concerned about the nucleus of the atom. So we are going to ignore the electrons in the electron clouds for now, however we will occasionally encounter electrons that are created by nuclear reactions.

Protons and Neutrons are particles called Baryons. Baryons are composed of three quarks (Mesons are particles made with two quarks). Here is how it works: A proton is made from two up quarks and one down quark. Up quarks have charges of +2/3 and a down quark has a charge of -1/3, so if you add up the charges, you get: 2/3 + 2/3 – 1/3 = +1. Neutrons are made of two downs and one up, so they are electrically neutral.

But wait a second! If you have 2 ups and 1 down, that only adds up to (2*(0.003) + 0.006) GeV/c2 = 0.012 GeV/c2 of mass, but a proton has a mass of about 1 GeV/c2! It does not add up, and here is why. Experiments have confirmed that the quarks in a proton and a neutron are held together by the strong nuclear force, carried by gluons. It is a complex set of interactions, but simply put, the interactions keeping the quarks together are very high energy, so high in energy that they account for the rest of the mass!

Atomic Nuclei and Radioactive Decay

β-decay (Wikipedia)

It also happens that a neutron is about 0.14% more massive than a proton. This corresponds to a mass of about 15 MeV/c2 (1000 MeV = 1 GeV), so if we could convert a neutron into a proton, we should get some energy out (1n -> 1p + 1e + 1νe). In fact, this happens with free neutrons because they are unstable because of interactions governed by the weak nuclear force. A free neutron will decay into a proton, an electron, and an anti-electron neutrino with a half-life of around 8 minutes. (The half-life is the time over which half a collection of one type of particles will convert into other types of particles.) This is the iconic reaction in one form of β-decay (beta-decay), known as β-decay. Another form of β-decay is β+-decay: Energy + 1p -> 1n + 1e + νe, where a proton absorbs energy that causes it to break into a neutron, an anti-election (also called a positron) and an electron neutrino. β+-decays can not occur in isolation. You will often see electrons referred to by the term “β-particles”.

The simplest atomic nucleus is that of Hydrogen, just a single proton. We do not usually see single neutrons around unless we are near a radioactive source because neutrons are unstable as we have mentioned. Protons are stable, however, so we do see Hydrogen, the most abundant element in the Universe.

Atomic nuclei are held together by the “residual strong nuclear force”, which is a manifestation of the strong nuclear force itself. Nuclei are held together by virtual mesons that carry gluons between protons and neutrons inside. There is a lot of activity taking place inside a nucleus all of the time!

It is possible to create an atom with the same chemical properties as single-proton Hydrogen if we add neutrons to the nucleus. These are isotopes, nuclei with the same total charge (which governs the chemistry) but differing numbers of neutrons. For example, Deuterium, another isotope of Hydrogen, has one proton and one neutron. It is nearly identical to Hydrogen chemically, but it is much more rare than plain, old Hydrogen because at some point, a free neutron would only have about 8 minutes to latch onto a proton to form it. Another isotope, Tritium, has one proton and two neutrons, and that is even more rare.

α-decay (Wikipedia)

Helium normally has a pair of protons and a pair of neutrons. It has other isotopes, but it happens that the normal Helium nucleus is very stable and when bigger atoms break apart, they often do so by giving off Helium nuclei, or α-particles (alpha-particles). That process is known as α-decay.

Heavy elements such as Uranium (U) have a very large number of protons (92) and often even more neutrons. 235U, for example has 143 neutrons! Nuclei with either too many or too few neutrons relative to the number of protons are unstable. In addition, large nuclei are often unstable simply because the strong nuclear force is a very short range interaction. If a nucleus is too large, the strong force can not hold it together effectively. This means that there is a “Band of Stability” for atomic nuclei, shown here by plotting the number of neutrons against the number of protons in known isotopes. The colors indicate whether each isotope is stable (black squares) or if not, their primary modes of decay.

The Band of Stability of Nuclear Isotopes, showing observed isotopes (Wikipedia)

Other atoms may split into components that are larger than α-particles. For example, 235U can break into a Krypton-92 (92Kr) nucleus, a Barium-141 (141Ba) nucleus. This is known as fission. The inverse process if known as fusion.

During most of these different types of radioactive decays, high-energy photons are released that are known as γ-radiation or γ-rays. Each one of these decay modes results in different energetics, so when we are concerned about how radioactive decay effects the human body, we need to worry about the specific consequences of human exposure to α-, β- and γ-radiation.

Effects of radiation on Humans

So suppose you are walking along a path in a forest far from any radiation source. You just happen to be carrying your trusty Geiger Counter and decide to turn it on just for fun. You will hear the Geiger Counter click sporadically and you may be shocked to find that the clicks increase when you move the Geiger Counter closer to your body. There are radioactive isotopes everywhere! Background levels of radiation are generally due to trace isotopes found in rocks, cosmic rays that reach earth from space, and any life form will have some 13C (Carbon-13). In fact the process of live itself bioaccumulates 13C. Well, a quick check of the Band of Stability graph shows that an isotope of Carbon-13 (with 6 protons and 7 neutrons), will β-decay to form stable 12C. The half-life of Carbon is about 5730 years. About 1.1% of all Carbon on Earth is in the form of Carbon-13 and by comparing the abundance of carbon in biological material with that of the world at large, it is possible to date the material through Carbon Dating. The electrons that are released in the β-decay can be picked up by the Geiger Counter.

The Geiger Counter will essentially count the number of decays it detects per unit time, measured with the SI unit of the Becquerel (Bq). 1 Bq = one decay per second. While this unit gives the number of radioactive decays taking place per unit time, it does not indicate anything about their effect. In order to do that, we need to take into account how much energy the decay products are carrying and how much of that energy is absorbed by the human body.

A typical human body produces about 4,000 Bq of activity, due to 40K (Potassium-40) beta decays alone.

The SI units for the dose of radiation that are absorbed by the human body are Grays (Gy). 1 Gy = 1 J/kg. It is strictly a measure of the total energy deposited in the body and does not quantify the net effect of the radiation. In order to understand the effects, we will need to look at the differences in how each type of radiation interacts with the body.

A high-energy photon (γ-radiation) that is absorbed by body tissues generally breaks apart the molecules it strikes. The radicals (essentially the electrically charged pieces of broken molecules) that are created when this happen can then react chemically with other molecules around them. The overall effect is limited relative to other forms of radiation, however, because a single ion gives rise to a small number of radicals so there is little overall damage from a single γ-ray relative to other forms of radiation. γ-rays can also scatter off molecules through the Compton Scattering, which frees lower energy recoil electrons that can interact with molecules in tissue.

Gamma radiation is usually not completely absorbed by the human body. That is how it is possible for medical X-rays to work, because only a fraction of the X-rays are absorbed by the body while the rest pass through. Some of those that do pass through expose a piece of film or a detector to create an image.

A β-ray (an electron) does similar damage to a photon, but for different reasons. They do not usually penetrate as deeply, though electrons carry some momentum, and they carry electric charge that can ionize some molecules as they pass near them. In other cases, the electron can be absorbed by a molecule or scatter other electrons to create radicals.

A high-energy neutron that is released by radioactive decay has a lot of momentum. When it smashes into tissue, a game of molecular bumper cars ensues. If the neutron has enough energy, then it is possible to break molecular bonds and to release reactive radicals into the body. Given the fact that neutrons can have a good deal of momentum, they generally produce more radicals than a single γ-ray. Neutrons can deposit their energy deep in tissue and are readily absorbed by some isotopes found in the body. This can cause further radioactive decays.

Protons do carry roughly the same momentum as a neutron, they also carry electric charge that results in ionization. They do more damage than electrons but do not penetrate as deeply as neutrons due to their electric charge.

α-particles and heavy nuclei cause the worst damage because they have the most momentum, but they penetrate the least. These particles carry a ton of momentum and they break up molecules and create radicals until they are stopped. They are highly likely to interact with the tissue rather than pass through it.

When determining the net effect on the body, one also has to consider that the different types of tissue in the body each react differently to radiation at different energies. Studies have been done in an attempt to average the effects over the body and these have led to a standards regarding the Relative Biological Effectiveness (RBE) of the various types of radiation. These are used to determine the equivalent absorbed does, given in Sieverts (Sv). 1 Sv = 1 J/kg just like Grays, only now the dose in Grays is multiplied by a weighting factor, WR, to account for the relative impact of various sorts of radiation on the body. (Sieverts can be related to the outdated unit, the rem with 1 mSv = 0.1 rem.) These weights are determined by experimentation under ideal circumstances compared to the relatively complex circumstances found inside a nuclear reactor, but they do offer insight to the impact on people nonetheless.

Typical background doses vary from place to place, depending on which specific isotopes can be found in the local environment, but Wikipedia gives some general levels that can be used as guidelines if you read dosage numbers in the press. These can be found in the table here, where doses are given in mSv/yr unless otherwise noted for one-time total doses.

Wikipedia has an excellent table that describes the types of symptoms, timescales and fatality rates of radiation sickness. Radiation doses above ~1000 mSv can cause radiation sickness. The higher the dose, the worse the symptoms. Doses up to about 2000 mSv can cause nausea, dizziness, fatigue and a reduced white blood cell count. 5% of people die within a month of receiving 2000 mSv of radiation. Doses between 2000 and 6000 mSv can cause cognitive impairment, purpura, hemorrhage and skin loss and above 5000 mSv, fatality becomes nearly certain, though the period of suffering can last up to a month. Higher doses lead to increasingly severe symptoms. Doses above ~30,000 mSv can cause seizures and death within 48 hours.

The geometry of a nuclear power plant such as the Fukushima-I plant can lend to dramatic variations in radiation levels on site. This is due to the fact that concrete, metal and water shield their surroundings from radiation to different degrees. Given the complicated geometry of a nuclear power plant, there could be low-radiation regions very near high-radiation areas. It is very difficult to calculate the dosage that any worker would have received because one would need to know the radiation level at every single point along that worker’s path through the course of the day. Radiation detecting badges are helpful, but the relative dose that an individual receives can vary from one side of his or her body to the other.

The situation in Fukushima-I is especially complicated because there has been a good deal of damage to the plant. Several large Hydrogen gas explosions have spread trace radioactive material far from the plant, but it typically becomes less concentrated if it is spread over a large area – unless an explosion launches a chunk of radioactive material skyward.

The situation further from the plant is generally a bit easier to estimate because the distribution should typically be a bit smoother than the conditions inside the plant. I must include the caveat that I said estimate, not predict. If a measurement is made far away from the plant, material will be dispersed relatively uniformly around a field, for example, so radiation measurements will be more indicative of nearby surrounding areas. There can still be large-scale variations in dispersal patters. Wind currents could blow radioactive material in either one general direction, or it could be widely dispersed, carried aloft at high altitudes as it was in the case of Chernobyl.

Dispersal of Radioactive Material after Chernobyl. The human body has a natural radioactivity of ~4kBq. (UNEP)

The primary variable in long-range dispersal is how high the radioactive material is sent by explosions at the plant. Chernobyl experienced a large explosion that sent radioactive material high aloft, where it could be dispersed over a wide area for a long period of time. The explosions in Japan have not been nearly as large, though some radioactivity has been detected within ~100km or so from the site that has led to some precautionary measures. Clearly, the fewer explosions that take place in the reactors, the better off everyone will be because there will be less dispersal of radioactive material.

Protecting yourself

Unless otherwise necessary, it is generally best to avoid radioactive material and to avoid areas that have high levels of radiation. In an emergency, however, it is generally best to find a way to shield yourself from the radiation and this means placing material in between you and the radiation source. All material absorbs some radiation, but it is best to use dense materials because they tend to be more effective. How much radiation is absorbed by a material is measured by its “Halving Thickness”, or the thickness of that material to reduce gamma radiation by a factor of 2. If a material can stop a gamma ray, it can generally stop everything else. An effective fallout shelter using 1 m of dirt accounts for ten halving thicknesses, decreasing the effective radiation fluence by a factor of ~1000.

I hope that this is useful to people who are interested in learning a bit more about radiation and radioactivity. I believe that if people know its effects and how one can treat it properly and protect one’s self, that it tends to alleviate unnecessary fear. The world will not end if the Japanese plants were to go into meltdown. A meltdown would imply significant environmental impacts, and it may also mean that there would be a portion of Japan that will be unlivable. People living outside of Japan are not likely to be significantly affected, except in the absolute worst case scenario. Good luck to everyone working to prevent a meltdown, and please be safe.

Electron microscope image of a part of a meteorite from Mars: ALH 84001 (Wikipedia

Two NASA astronomers shocked the world with an announcement in 1996: Alien life discovered in a meteorite from Mars. Though NASA eventually retracted the paper on the face of new evidence that suggested some of the carbonate globules were formed at rather high temperatures that would likely preclude life, the announcement still served to tantalize the public about the prospects of life traveling about in space. We see that even today with major news about a controversy over another potential discovery of life from a meteorite. Unfortunately, the life that was discovered may be due to contamination from the Earth.

Wikipedia: ALH 84001

Wisconsin Protests

Protests in Madison continued through the weekend. 30-50,000 people showed up Saturday to protest against Governor Walker’s attacks on working families. Mail carriers had their day on Sunday. But the Tea Party had a pro-Walker rally on Sunday as well at Alliant Energy Center. Despite having access to the Kochs’ billions, they could only muster 600 people to support Scott Walker. A new poll came out, albeit with a very small sample (603 respondents, corresponding to errors greater than +/- 4%), showing very negative reactions to Governor Walker, a strong majority against stripping unions of collective bargaining rights, and 72% of Wisconsinites want to solve the Walker-created budgetary problems by raising taxes on people earning more than $150,000 per year. HUGE protests are expected across the nation next Saturday, with more events also planned throughout the week. And the bottom may be dropping out on Governor Walker as thousands of dairy farmers plan to drive their tractors to the Capitol to show support for unions next Saturday. In Wisconsin, when dairy farmers protest Republicans, it generally means the end of the careers of those Republicans. Some are predicting that the protests in Madison are just the beginning, as the debate to cut Social Security begins in Washington.

Other Tea Party Fun

In Ohio, the Tea Party legislature is passing tougher anti-union legislation than the bill in Madison. It makes it a criminal offense for workers to go on strike. Some shenanigans were required in order to get the bill through committee, however. When a committee was deadlocked on the proposal with even some Republicans dissenting, the Republican Senate Majority Leader fired two Republican Senators from their committee assignments so that the bill could reach the floor. Still, even some Republicans are calling the bill unconstitutional and it likely violates existing labor laws. Unfortunately Ohio Dems can not prevent a quorum in the Republican-filled Ohio legislature. This week has seen the largest protests to date in Columbus.

Indiana Democratic House Members are still in Illinois, preventing a vote on anti-union legislation there. As protests in Indiana continue, Indiana’s newly elected Republican Secretary of State Charlie White is probably going to jail. He has ben indicted on three counts of felony voter fraud for registering to vote in places where he did not live. One would think that a State Secretary of State, who is in charge of elections within the state, would understand the rules here – that is unless that was the reason for his choice to run. Keep in mind that White has supported the voter ID requirement in Indiana, ostensibly to prevent people from voting illegally as he has done. There are a lot more interesting details in this article
from the Brad Blog.

The State Legislature of Arizona has passed an unconstitutional bill to nullify federal laws. Laws of this sort were the same type that precipitated the Civil War, when southern states attempted to nullify federal regulation of slavery. This comes on the heels of a vote by the Arizona Legislature to allow people to carry guns to public events, because, you know, guns at public events are a fantastic idea and it is not as if one of their own members of Congress was shot in the head by a lunatic carrying a gun or anything just two months ago. Oh, as it happens, Jared Loughner has just been hit with 49 additional criminal counts for his firing spree on a crowd at a Giffords event in January.

The Tea Party-led Montana State Legislature is still at it. Even Republicans are now claiming that the Tea Party is leading to the the Republicans to become such a national laughingstock that they are driving away young GOP voters. In addition to working to allow guns in schools, they are trying to, as MT Cowgirl puts it, “legislate the laws of nature” to deny climate change, eliminate stem cell research, to claim the earth is between 4,000 and 6,000 years old, and to criminalize homosexuality.

Florida Tea Party Governor Rick Scott may be subject to a criminal investigation over his firing of the state nursing home long-term care obmudsman. It is not generally considered a smart move to anger the nursing homes in the state with the nation’s most geriatric population.

Wikileaks

Julian Assange is appealing the expected British court ruling that he should be extradited to Sweden. His organization WikiLeaks has already uncovered a huge amount of corruption from countries accross the world. It was revelations of the excesses of the family of the Tunisian dictator that have led to pro-democracy rallies across Africa and Asia. Meanwhile, Bradley Manning, who the military claims gave WikiLeaks documents that it later published, is in detention under cruel and unusual conditions – including being kept in his cell naked, being refused sleep, etc. Does this sound familiar?

Corruption on the Supreme Court

Calls are coming out for the removal of Supreme Court Justices Clarence Thomas, Samuel Alito and Antonin Scalia for illegally participating in political fundraising, tax evasion and refusing to make public conflicts of interest.

A Taurus XL Rocket on its last successful launch in 2004 (Wikipedia)

Failures on Climate Change

NASA lost another payload that was to be launched to orbit on an Orbital Sciences Taurus XL rocket on Friday because the nose cone failed to separate en route to orbit. The rocket was carrying the Glory satellite, a member of a cluster of satellites to study climate change, in this case by observing aerosol abundances in the atmosphere. Aerosols reflect light from the Sun before the light can be absorbed by the ground. Three out of the last four launches on the Taurus XL have failed for the same reason, and two of them were carrying a satellite that was intended to study Climate Change and the third was to study ozone in the atmosphere. This has led to some people to discuss conspiracy theories. Regardless, there is now a good deal of concern that important measurements needed to better forecast climate change will not occur in a timely fashion due to these launch failures and due to the $600 million cuts to NASA climate observational programs by Congressional Republicans (who do not believe in Climate Change, but do believe in Biblical Unicorns). NASA is trying to defend itself from claims of incompetence, which frankly happens a lot when budget cuts lead to cutting corners. Says Rick Obenschain, Deputy Director of NASA’s Goddard Space Flight Center:

“To make any connection between our investigation of the 2009 … mishap and Friday’s failure of the Glory launch at this time would be purely speculative and wholly inappropriate.”

Of course. It would be wholly inappropriate to consider that a mishap due to one failure of a nose cone separation with another on the same launch system carrying the same type of satellite. That is the statement of a bureaucrat trying to defend his bureau.

During the presentation of the results of the inquiry, physicist and Nobel Laureate Richard Feynman embarrassed the NASA community with a simple and elegant description of the problem that destroyed the Space Shuttle Challenger – stiffness in seals on the rocket boosters at low temperatures. Watch here:

His work on the committee led to another perspective, encapsulated in bullet points from the Challenger Disaster investigation

Shrinking and unpredictable budgets became problematic. NASA was consistently asked to do more with less (the eternal hope of budget administrators everywhere).

The Reagan administration put more and more pressure on NASA to keep a regular schedule of launches. President Reagan’s dream of space weapons was dependent on keeping to the schedule. Launch delays became more problematic for NASA administrators.

The “can-do attitude” of the 1960s became a “make-do attitude.” Cost-saving mechanisms became the norm. Engineer salaries did not keep pace with inflation, and out-sourcing became commonplace.

Budget cuts made redundant safety systems less desirable. If the engineers found a mechanical problem, the classification of the problem became not just an issue of safety, but also of budget. So if a mechanical problem occurred, but didn’t immediately endanger life, it could be classified as a “concern” rather than a “problem.” In other words, if it didn’t work like we expected, but nothing bad happened, then we’ll just ignore it.

The o-rings had been a concern before. Cracks had been found in the o-rings after previous flights. However, since no disasters had happened, the cracks were seen as “normal,” rather than a “problem.”

–Courtesy of problems.olhoff.com

In essence (and I’m paraphrasing Feynman here): Continued budget cuts eliminate redundant checks and balances in systems that were there to ensure safety. Cutting back too much on the budget for an exploratory program like NASA guarantees there will be problems.

We should understand that the Challenger Disaster occurred during the lifetimes of all of the Members of Congress. It is known that scaling back programs leads to technical trouble. Therefore, scaling back Climate funding is a useful fait accompli for a Climate Change denying Congressman who calls for deep cuts to science budgets. The subsequent claim that either the net result was unexpected or that they have confidence that an organization can do more with less only serves to led plausible deniability to the Congressman. Yet most Climate Change denying Congressmen receive a good deal of campaign funding from oil companies that would be adversely impacted should there be a viable renewable alternative to oil – and these same companies lobby Congress intensely on the issue of Climate Change.

In short – whether by direct or indirect interference is no matter but the oil companies who hold the GOP purse strings are setting back Climate Change research upon which rely in order to better understand human impact on its own surroundings.

VY Canis Majoris highlights this paradigm-shifting video (via blangled on YouTube)

We have heard from elementary school that the Sun is an average star. Some people may be bothered by the fact that there is very little about the Sun that is superlative, but it should not bother you too much. Other people are curious about just how large other stars can be. At the moment, a red supergiant star, VY Canish Majoris holds the record. If placed inside our Solar System, the star would extend to the orbit of Saturn! At 30-40 times the mass of the Sun, it is also a very massive star, though it has an amazingly low density, about 1/10,000th the density of air at sea level on a warm day. Click on the image to see just how large CY Canis Majoris is relative to the Sun, its planets, and other stars.

Wikipedia: VY Canis Majoris

Comet 9P/Tempel I (Deep Impact, NASA, JPL, University of Maryland)

Welcome to the nucleus of Comet 9P/Tempel I, the first object that was visited (and struck by) NASA’s Deep Impact space probe. The 7.6×4.9km hunk of rock, dust and ice revolves around the Sun roughly between the orbits of Mars and Jupiter once every 5.68 years. After sending a washing machine-sized impactor to crash into the surface to study the material kicked off the comet, the Deep Impact probe continued through space on its way to a rendezvous with Comet Hartley 2 in November, 2010 under the name EPOXI. Another spacecraft NExT (formerly Stardust) has just revisted Comet Tempel I on February 15th.

Check it out at Wikipedia.

Rubber Duck, Osaka 2009 (Florentijn Hofman, artist)

Nineteen years ago, in January, 1992, a 50,000 ton giant freighter struggled through 40-foot waves in heavy seas 500 miles south of the Aleutian Islands. Twelve shipping containers on top of the deck fell off the ship as it listed and fell to the ocean. One container that held 7,200 cardboard and plastic packages must have opened. Within a short time, the packages fell apart, releasing their contents, bathtub toys, to float on the seven seas. The 28,800 colorful beavers, frogs, turtles and (of course) rubber duckies have allowed oceanographers to gain new insights on the nature of ocean currents around the world and they have helped advance computer modeling of earth’s climate system. This article by Donovan Hohn for Harpers is well worth a read.

Solar Flare (NASA Goddard Space Flight Center)

A large X-Class Solar Flare occured early Tuesday and an image from the Solar Dynamics Observatory posted on Astronomy Picture of the Day shows it. Considering the rate of travel of the solar wind, there may be Aurorae tonight that could be visible from mid-latitudes (if it is not cloudy).

The Supreme Council of the Armed Forces of Egypt mentioned Tuesday that work will soon begin on a new national constitution. Efforts continue to encourage protestors back to work. They are now arguing for labor rights and higher pay. After protests were put down by force in Iran, Iranian MPs call for the death penalty for opposition group leaders Mehdi Karroubi and Mirhossein Mousavi. This time, the US is strongly and quickly standing behind the protestors. On the other hand, the US reaction is not likely to be as eager in Yemen, where protests have continued into their fifth day. Protestors are not terribly happy about the US-back President, nor are they very happy about the American drone strikes against Yemeni nationals as part of the “War on Terror”. All of the strike activity continues to bring up the question “Where next?” While all eyes are on Pakistan, whose push for nuclear arms gives it one of the larger nuclear arsenals in the world, fears are rising that some nuclear weapons may be lost in this very unstable country. Oh, and one source of angst against the government in Pakistan is its cooperation with the US drone attacks that have led to a large number of civilian deaths. But Democracy is winning the day as protests continue in Baharain, despite the King’s gifting every family in the country with $3,000 to soothe the nerves. Sadly, America finds itself in the ironic situation where it is not the self-avowed bastion of democracy it once claimed itself to be. Perhaps this is a problem with marketing.

Few Americans know very much about the drone strikes in different countries, but it turns out they may not care. Many Americans, including a majority of Republican primary voters are preoccupied with whether Barack Obama is an American citizen. (He is.) Despite the falsity of the claim, House Speaker John Boehner and Majority Leader Eric Cantor do not believe it is their job to correct their constituents. This comes even as Republicans plan to attack the 14th Amendment which argues that anyone born on American soil is a US citizen. This seemingly innocuous guarantee prompted an outcry from Representative Louie Gohmert (R-Tx) last summer. On the other hand, they are not very helpful on the economy either. After the Republicans campaigned on jobs, jobs, jobs, John Boehner says that if the proposed draconian cuts to the federal budget cost jobs, “so be it.” The loss of more jobs, would of course limit future federal revenue, creating more budgetary problems in the future.

Despite several costly provisions, the House succeeded on its third attempt in one week to extend several provisions of the PATRIOT Act. 27 Republicans voted against it and 65 Democrats voted for the extension which includes “roving wiretap” court orders and allows authorities to seize “any tangible things” in a search. See how your Representative voted here.

In other portions of the US Government, Supreme Court Justices Scalia and Thomas are taking heat for failing to recuse themselves from apparent conflicts of interest revolving around their involvement with the Koch Brothers prior to the Citizens United ruling last year, in which the two justices argued slavishly in favor of corporate interests such as those of the ultra-libertarian Koch brothers. Clarence Thomas’ wife is also head of a Tea Party group. While many Tea Party groups are financed in part by the billionaire Koch brothers, Clarence Thomas has failed to report income from his wife’s political activities for more than a decade now, prompting the Supreme Court Justice to uncomfortably claim that he did not understand the corresponding tax law when the news became public. Oops.

The US government is asking Twitter to divulge information pertaining to the whereabouts and names of people associated with WikiLeaks in a move that bodes poorly for internet privacy rights. This and other issues related to first amendment rights may be reasons that Julian Assange has brought civil liberties advocate Alan Dershowitz onto his legal defense team.

The New York Stock Exchange is being purchased by the German Börse, all while Republicans across the nation continue to argue against Socialism. Not to worry, the two leading shareholders in the Börse run an American hedge fund. The NYSE is struggling to maintain profitability by leaving retail investments for derivatives trading.

In Space, the probe NExT (formerly Stardust) makes history as it flies past its second comet, Tempel 1. It was first launched toward Comet Wild 2 12 years ago and has very limited fuel remaining onboard.

Buddha Statue, Chinese Garden, San Francisco, CA

For those of us who have read the Bible, the Koran and a good number of other religious texts, there is one unifying truth that rings out loud and clear: None of these texts seems to hold any information that could not have been held by the people who lived at the time the texts were written. The Bible, for example, has exactly no information inside it that hints at some fundamental discovery about the Universe that was not known to the bronze- and iron-age inhabitants of Middle East. This poses a serious problem for adherents. Why would divinely-inspired texts not have real predictive power?

It turns out, that there is a religious text that is capable of describing things that were not otherwise known to the ancients. That text is the Lalitavistara Sutra, a Buddhist text in which the Buddha rather accurately predicted the size of a typical atom, a yojana in Sanskrit. Here goes:

Four krosha, each of which was the length of
One thousand arcs, each of which was the length of
Four cubits, each of which was the length of
Two spans, each of which was the length of
Twelve phalanges of fingers, each of which was the length of
Seven grains of barley, each of which was the length of
Seven mustard seeds, each of which was the length of
Seven particles of dust stirred up by a cow, each of which was the length of
Seven specks of dust disturbed by a ram, each of which was the length of
Seven specks of dust stirred up by a hare, each of which was the length of
Seven specks of dust carried away by the wind, each of which was the length of
Seven tiny specks of dust, each of which was the length of
Seven minute specks of dust, each of which was the length of
Seven particles of the first atoms.

The net result is approximately that of a carbon atom.

Aurora update

X-Ray image of the Sun, February, 15, 2011. (NOAA Space Weather Prediction Center)

Above is the most recent image of the Sun’s lower atmosphere in X-Rays. Compare with a similar image from Sunday. One thing that you can notice is the rotation of the Sun on its axis – it rotates about once per month at the equator, but rotates a bit more slowly at the poles.

Solar X-Ray flux, February, 2011 (NOAA Space Weather Prediction Center)

The X-Ray flux measurements from the GOES-15 satellite shows a number of small bursts from the Sun during the past couple of days, but nothing major.

Auroral Oval, Norther Polar Map (NOAA Space Weather Prediction Center)

In fact, a look at the Earth’s polar regions shows that the Auroral Ovals are roughly normal. You would be able so see the aurorae if the yellow circle were to lie near your portion of the world. As of now, it appears that viewing is limited to northern Canada, Norway, Greenland and northern Siberia. For more details, please see NOAA’s Space Weather Prediction Center.

Aurorae for Valentines Day?

The Sun has an 11-year cycle of activity over which the number of sunspots and solar flares oscillates with time.  It is making a late return to activity from the most recent Solar Minimum, when its level of activity is quite low. During levels of heightened activity, the sun produces solar flares that send charged particles out into space and sometimes these particles collide with the earth’s atmosphere, producing aurorae.

Recent observations by GOES-15 (Geostationary Operational Environmental Satellite), which is operated by the US National Oceanic and Atmospheric Administration (NOAA), indicate that a solar flare may be possible during the next few days.

GOES-15 X-Ray image of the Sun's lower atmosphere

Above is an image of the Sun today, from the high-energy X-Ray part of the electromagnetic spectrum. The bright spot just below and to the left of the center of the Sun’s disk is hot gas that lies directly above an active sunspot group. The extended halo around the Sun is hot gas in the lower atmosphere, the bottom portion of the solar Corona. If a solar flare were to go off, it would head right toward the Earth and below, you can see that the amount of activity, indicated by the X-Ray flux levels, have increased over recent days.

Solar X-Ray surface flux, February 2011 (NOAA Space Weather Prediction Center)

Most solar flares do not do much harm to human activity, though they can produce radio and cell phone interference. On rare occasions, strong solar flares might damage satellites or bring down the power grid. It is much more likely that when the charged particles from solar flares collide with Earth’s atmosphere, we will be treated to a nice display of aurorae at night. The best time and place to see the aurorae are at mid- to high-latitudes on a clear, dark night between 10pm and 2am. See the NOAA Space Weather Prediction Center website or Space Weather.com for updates on solar activity.